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Abstract

Dependency on machines has been on an increasing trend in the last decade as
applied in human daily task. In the future, human and machine collaboration will continue
deepening with increased average amount of time spent for daily or work tasks. The use
of human and robot interaction (HRI) has turned to be integral part of society, especially,
in service area, health and clinical application, industrial purposes to mention but a few.
The challenge this research seeks to understand the relationship between human muscle
motions and joint angle motions. This is important to get intuitive EMG interface for
robotic arm, but it is difficult to correspond between muscle and joint angle motion also
robot and human are mechanically different.

The main focus of this research is to investigate the minimum analysis method
for 3 upper-limb EMG signals to control 2 DoF robot arm. There are two objectives: (1)
To measure 3 kinds of elbow & shoulder movements with 3 EMG sensors can be
discriminate with simple EMG amplitude analysis; (2) To investigate the most simple and
best analysis combination of feature extractions and machine learnings. To this end, these
experiments were conducted to ascertain the validity of the approach.

The first experiment sought to address issues related to human-robot cooperation
tasks focusing especially on robotic operation using bio-signals. In particular, this
research proposes to develop a control scheme for a robot arm based on electromyography
(EMG) signal that allows a cooperative task between humans and robots that would
enable teleoperations. A basic framework for achieving the task and conducting EMG
signals analysis of the motion of upper limb muscles for mapping the hand motion is

presented. The objective of this work is to investigate the application of a wearable EMG



device to control a robot arm in real-time. Three EMG sensors are attached to the
brachioradialis, biceps brachii, and anterior deltoid muscles as targeted muscles. Three
motions were conducted by moving the arm about the elbow joint, shoulder joint, and a
combination of the two joints giving a two degree of freedom. Five subjects were used
for the experiments. The results indicated that the performance of the system had an
overall accuracy varying from 50% to 100% for the three motions for all subjects. Subject
1 have an overall accuracy at 83.3%, subject 2 at 80%, subject 3,4 and 5 are 73.3%, 83.3%
and 63.3% respectively. Motion 1 get highest accuracy 100%, beside motion 2 get lowest
50%. Subject 5 had the lowest accuracy at 63.3%. This study has further shown that
upper-limb motion discrimination can be used to control the robotic manipulator arm with
its simplicity and low computational cost.

The second research focuses on the minimum process of classifying three upper
arm movements (elbow extension, shoulder extension, combined shoulder and elbow
extension) of humans with three electromyography (EMG) signals, to control a 2-degrees
of freedom (DoF) robotic arm. The proposed minimum process consists of four parts:
time divisions of data, Teager—Kaiser energy operator (TKEQO), the conventional EMG
feature extraction (i.e., the mean absolute value (MAV), zero crossings (ZC), slope-sign
changes (SSC), and waveform length (WL)), and eight major ma-chine learning models
(i.e., decision tree (medium), decision tree (fine), k-Nearest Neighbor (KNN) (weighted
KNN, KNN (fine), Support Vector Machine (SVM) (cubic and fine Gaussian SVM),
Ensemble (bagged trees and subspace KNN). Then, we compare and investigate 48
classification models (i.e., 47 models are proposed, and 1 model is the conventional)
based on five healthy subjects. The results showed that all the classification models

achieved accuracies ranging between 74%-98%, and the processing speed is below 40



ms and indicated acceptable controller delay for robotic arm control. Moreover, we
confirmed that the classification model with no time division, with TKEO, and with
ensemble (subspace KNN) had the best performance in accuracy rates at 96.67, recall
rates at 99.66, and precision rates at 96.99. In short, the combination of the proposed
TKEO and ensemble (subspace KNN) plays an important role to achieve the EMG clas-
sification.

In conclusion, the validity of the usage of biological signals in robot control has
been verified. Three EMG signals generated from three EMG sensors that are mounted at
three different muscles that correspond with three upper-limb motions have been
discriminated and applied successfully for controlling the robotic arm. Based on the
model’s discrimination generated from the EMG signals with simple feature extraction
(Area), the result shows that 1 joint motion is easily discriminated (80-100%), however 2
joint motion is not easily discriminated (60-70%). The control scheme in use proofed to
be manageable with an accuracy range between 50% to 100%. More than 2DoF motions
need to analyze time-variation characteristics. The percentage of accuracy rate per subject
ranged 63.3%-83.33%. The highest performance was motion 1 at 100% while the worst
performance was motion 2 at 50%. The machine learning model function control shows
promising contributions in a robust control that adapt to the usability of the controlling
robotic hand. This can give better performance to control the robot and to tackle the
limitation of the systems. Overalls, 48 classification models for discriminating three EMG
signals at three upper limb motions and compared and evaluated the minimum parameters
of feature extractions and machine learning models with five healthy subjects’ data. The
results showed that all the proposed models achieved accuracy rates in the range of 74%—

98% and the processing speed was below 40 ms, which is an acceptable delay for

Vi



controlling a robotic arm. The most simple and best analysis combination of feature
extractions and machine learnings is discrimination model with no division, using TKEO,
using feature extraction (MAV,ZC,WLand SSC) and using ensemble subspace KNN. The
performance index are accuracy rates 96.67% %, recall rate 99.66%, and precision rates
96.99%. Machine Learning “Ensemble (Subspace KNN)” seems to be effectively
working for the 3 upper-limb EMG to 2DoF Robot arm Control. The difference between
the best model and the conventional model was TKEO. It seemed that TKEO functioned
to make the results of MAV, ZC, SSC, and WL stand out. Further research will deal with

classifying more than three upper motions with three EMG sensors.
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Chapter 1 Introduction

1.1 Motivation of the research

In the recent past, robots have turned to be an integral part of the society with
applications in industrial processes and manufacturing, military, welfare and healthcare
systems, transportation, and autonomous vehicles, to name a few[1]-[3]. Robots in
automation are fueled by the inherent virtue of machines in doing monotonous tasks with
repeatable precision over a lengthy duration. In contrast to human labor, robots require
fewer safety precautions, which makes them ideal for handling dangerous elements and
disasters [1]-[3]. As an application area, the COVID-19 pandemic that has hit the world
is a good case for the usage of robots in monitoring and delivery of essential services
safely without compromising the safety of the medical staff [3], [4]. Research and
development of the technology essential for estimating and identifying the usable
biological signals through sensors and signal processing techniques, as well as their
conversion into control scheme has been carried out in the recent past. The need for bio-
signal control is heightened by elderly and disabled people who through myriad of
happenstances have lost control of the environment[5]. The use’ of non-physical
interactions between humans and robots has grown rapidly in recent years. Human and
robot cooperation trigger the development of research and technology in the bio-signal

field.

Monitoring and analysis of bioelectrical signals and movements can help
identification, prevention, and evaluation of a wide range of issues, especially in
healthcare and industry[6]. Bio-signal such as Electromyography (EMGQG) is a pure source

for driving human muscles that originate from the nerve center. EMG will play an



important role in the future, the prediction of global EMG usage and demand from 2020-
2025 shows an increase in Compound Annual Growth Rate (CAGR) of 10.1%
(mordorintelligence.com). The technological development of the EMG system and its use
in the health sector, where EMG is a diagnostic procedure to evaluate the health condition
of the muscles and nerve cells involved in moving the muscles. EMGs signal translates

information into a number or graphic that can be processed into information.

DISEASE

DIAGNOSIS
EMG = REHABILITATION
APPLICATION % | EVALUATION

Robot Hand .
WELFARE How can we achieve
DEVICE CONTROL » Robot Arm -
Mobile Robot
Electrical Chair

intuitive control?

Figure 1-1 Application of electromyography

Human-Robot interface for robot arm should be more intuitive. It can be, a
human arm motion directly control a robot arm. However, a robot arm and human are
different. It is difficult to match between human and robot joint angles. Human joint angle
is generated by muscles, so it is important to understand the the relationship between

human muscle motion and robot motion (see fig.1).



The relationship between Human muscle motion and Robot motion

‘ Research Field ‘

Application Science
Assistive Device Understanding of
control by Bio-signal Biological Systems
Robot arm controlled Human joint control
by EMG by muscles (EMG)
Conventional research Conventional research

Figure 1-2. The relationship Human muscle motion and robot motion

Human Robot Cooperation (HRC) focuses on cooperative usage of either
workspace, control scheme, or task completion. From the literature review, much more
fine-tuning of the current robot system is needed to integrate robots in daily lives without
being overly intrusive [2], [7], [8]. Attempts like the miniaturization of robots to fit in
human workspaces is a step pursued by developers to achieve this integration. This
context, called agent autonomy, closely considered leader-follower relationships that

express how much robot motion is directly determined by humans for conducting tasks

[9], [10].

1.2 State of the art of the research

Biopotential signals have been proposed to control robots in literature. Fukuda
et al.[11] conducted teleoperation involving a human-assisted robotic arm using EMG
signals. The systems used six EMG channels and a position sensor to capture grasping

and manipulation signals. Artemiadis and Kyriakopoulos[12], [13] proposed a



methodology for controlling an anthropomorphic robot arm in real-time and high
accuracy using EMG of the upper limb using eleven muscles and two-position tracker
measurements. Benchabane, Saadia, and Ramdane-Cherif [14] introduced a new
algorithm for real-time control of five prosthetic finger motions and developed a simple
and wearable myoelectric interface. Liu and Young [15] proposed a practical and simple
adaptive method for robot control using two channels for conducting upper-arm motion.
Junior et al.[16] proposed a surface EMG control system to control the robotic arm based
on the threshold analysis strategy. In their proposal, the EMG signal was acquired and
processed by a conditioning system using Matlab software that gives flexibility and a fast

way to reconfigure the settings for controlling an actuation system device.

1.3 Problem Statement

One of the significant aspects of HRC is the control mechanism employed.
Conventionally, interaction with a robot is achieved with physical joysticks, keyboards,
and other hardware systems [5—8,13]. The limitation with this input system is the level
and quality of interactivity since they need to be physically attached. An alternative to
this provision is the use of wireless and wearable devices. Wireless and wearable devices
as a means of robot interaction open the control scheme to be versatile and user-friendly.
In this research, the wearable control system was employed as it availed advantages, as
is discussed below. With the advent of computing technologies, fine-tuned wearable

devices have hit the market.

Of particular interest to the discussion is devices that can record physiological
signals and process it to give meaningful information like heart rate, muscle activities,

and such. All such signals emanating from the human body, jointly referred to as



biopotential signals, are present in the human body and can be integrated to enhance the
quality of life [14—17]. Particularly so, in cases where there is a physical inability, bio-
signals have been applied to restore control to patients and disabled individuals as well.
An example of this is the use of prosthetics. Integrating such high-end devices with an
HRC system would be advantageous in the versatility and universality of the control
schema. 1 upper-limb muscle to 1 joint motion (elbow) with several feature extractions
& machine learning process have been done. Many muscles (more than 5 muscles) to
several joints motions with several feature extraction & machine learning also have been
conducted by many researcher. In this research, we present one of the readily available

signals from the skin surface, electromyography (EMG).

The position of the sensors on the surface of the muscles and its relations with
the movements raised appears to be a challenge. How to perform motion mapping using
several predefined sensors to get an EMG signal gathered from the movements of the
elbow and shoulder joints. Although previous research on robot control using EMG signal
amplitude has been done a lot. To control different functions, the user still has to switch
between the available modes using a signal trigger[17]. Even though the control algorithm
1s quite robust, the results still show control limitations and are not intuitive for the end-
user. Besides, the performances are still not good, such as accuracy and processing speed

for real-time control[18].

1.4 Research Objectives

The objectives of this research is to map EMG signal that generated from elbow
and shoulder movements in order to control robotic manipulator. There are two

objectives: (1) To measure 3 kinds of elbow & shoulder movements with 3 EMG sensors



can be discriminate with simple EMG amplitude analysis; (2) To investigate the most

simple and best analysis combination of feature extractions and machine learnings.

1.5 Research Contributions

The contribution of this study are the development of a control scheme for a
robot arm based on the Electromyography and the influence of the position of the EMG
muscle targeted and its relationship to upper-limb movements and the efficiency of
classification model with minimum process using machine learninf. The targeted muscles
are those that play an active role in the movement of the upper arm involving the elbow
and shoulder joints. The initial hypothesis from this research is that the brachioradialis
muscle (EMG channel 1/CHI1) and biceps brachii (CH2) will play a role in movement 1,
while the anterior deltoid muscle (CH3) will play a major role in motion 2 and motion 3.
In addition, we confirmed that the classification model with no time division, with TKEO
(Teager—Kaiser energy operator), and with machine learning method had good
performance in accuracy rates, recall rates, and precision rates. In short, the combination
of the proposed TKEO and ensemble subspace KNN(machine learning method) play an

important role to achieve the EMG classification.
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1.6 Outline of the thesis

The thesis writing structures based on the research objectives and its related
information. There are six chapters in this thesis. In the first chapter is introduction, we
will explain motivation of the research, state of the art of the research, problem statements,
research objectives and contributions. In second chapter, we will explain the research
methodology. Every information on research equipment, software, discrimination method,
and other methodologies are discussed in detail. Chapter three is the first experiment in
which we proposed mapping EMG signals generated by human elbow and shoulder
movements to 2 dof upper-limb robot control. Chapter four is the second experiment
where we proposed minimum process of EMG signals mapping using machine learning
to improve classification performance. Finally, chapter five is the brief conclusion of this

research



Chapter 2 Methodology

2.1 Proposed System Overview

Figure 2-1 illustrates an overview of the proposed control scheme. The system
comprises of EMG signal acquisition system, processing unit, motion discrimination
model/algorithm, and robot control mechanism. First, three target muscles were selected
that are representative of arm muscle activity during motion. Data acquisition was
performed on muscle surface using electrodes (Ag/AgCl, size: 57 x 48 mm, Biorode,
Japan). A combination of three different motion comprising of single and double DOF
were recorded.
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Limb Bnsors Acquisition EMG amplitude> (Evaluation)

The performance of the most simple feature extraction

Figure 2-2. Proposed system with simple feature extraction
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2.1.1 EMG Measurement Device
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Figure 2-4 EMG measurements device.

Figure 2-4 displays EMG measurement system device. EMG measurement
system featured a sensor circuit comprising of an instrumentation amplifier and an
operational amplifier. The function of each component is as such;

1. Disposable electrodes: Measuring Direct-Current-EMG(DC-EMG) from the elbow

and shoulder movement as the input signal. The input EMG from the selected
muscles are is relatively small.

2.

EMG measurement circuit: Amplifying the input signal to the designated range. A

bandpass signal filtering method is also applied to convert the input DC-EMG signal

10




into Alternate-Current-EMG(AC-EMG) signal. In the research, we are utilizing the

AC-EMG form of signal for EMG discrimination. The detailed schematic circuit can

be found in figure 2-5.

3. A/D converter: Convert the amplified AC-EMG signal from the circuit into binary

data. The binary conversion is to enable us to analyze the signal on a computer.

4. Computer: Analyze the EOG and EMG signal for discrimination and data saving.

Disposable EMG MEASUREMENT SYSTEM PC ROBOT CONTROL
» MATLAB Programming T
electrodes Bandpass filter:7-589Hz, Gain = 60 Q
- Data "
(Biorode SDC-H) DAQ unit: NI USB 6008 (A/D Conventer)
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CHOX @
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GND
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L ]
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Figure 2-5 EMG measurements process and circuit schematic
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The system comprises of EMG signal acquisition system, processing unit,

motion discrimination model/algorithm, and robot control mechanism. First, three target

muscles were selected that are representative of arm muscle activity during motion. Data

acquisition was performed on muscle surface using pre-gelled silver chloride electrodes

(Ag/AgCl, size: 57 x 48 mm, Biorode, Japan). A combination of three different motion

comprising of single and double DOF were recorded.

11




The system employed an analog band-pass filter with a lower cut-off frequency

of approximately 7 Hz and an upper cut-off frequency of 589 Hz and differential

amplifiers’ adjustable gain set to around 59-65 dB for each channel (see table 2-1). Data

acquisition unit comprised of National Instruments (NI) Corporation USB-6008 for

analog to digital conversion and a personal computer (PC) 15 2.7 GHz Let’ note Panasonic.

In the offline mode, signals were acquired at a sampling rate of 2 kHz. We used

MATLAB® software for subsequent signal processing.

Table 2-1 The amplification value and the gain for EMG measurement.

1st Amplifier Bandpass + 2 Amplifier 31d Amplifier Final Output
Cut-off Resistor | Capacitor Resistor
Content Resistor Amplification
Filter type | Frequency | R1/R2 Cc1/c2 [uF] R3/R4 Gain[db]
RO [Q] Factor
[Hz] Q] [F] Q]
High-pass 7.23 2200 0.00001 10 15000
Value 1000 920 59
Low-pass 589.46 2700 0.0000001 0.1 1000
Amplification
50.0 1.2 15
Factor

2.1.2 Software MATLAB

Matlab has been used primarily to analyze signals such as EMG data. The

abundance in mathematical functions and signals analysis can be handled by Matlab

easily and simple.
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Figure 2-6 Signal Acquisition by Matlab NI-DAQ Acquisition 2019a
Data analog recorder application in Matlab that connected with NI-Daq is used
to record EMG signal. The matlab based programming is not only use for recording, but
also for reading the EMG signal data from the NI-Daq device, and also for processing the
signals (see figure 2-6). Besides, the software is supported to control smart actuator such
as Dynamixel 12A. The robot operation based on EMG has been developed using Matlab

2019a software.
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Figure 2-7 Signals Analyzing using Matlab signal processing toolbox.
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Figure 2-8 Graph plotting using Matlab 2019a

Matlab has been used mainly to analyze the bio-signals such as EMG data. The
abundance in mathematical equations and toolboxes in Matlab made the data analysis
became simple and easy. Moreover, Matlab gives an interactive graph plotting. All
experimental graph shown throughout the paper is based on Matlab graph plot. Figure 2-

8 displays the image of the graph plotting on the Matlab.
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2.1.3 Muscles Position and Electrode Attachment

Although basic technique of surface Electromyography (SEMG) have been
developed in twentieth century and SEMG become popular in last decade, SEMG do not
still a general used technique. There are many variety and development of the method
have taken place scattered over the world in specific scientific communities.
Standardization is important. The SENIAM project (Surface EMG for the Non-Invasive
Assessment of Muscles) is a European concerted action in the Biomedical Health and
Research Program (BIOMED II) of the European Union. This project resulted standard
recommendation for sensors and sensors placements procedures and signals processing

methods for surface EMG, a set of test signals, books, publications etc.

CH 1 Anterior Deltoid

CH 2 Biceps Brachii

CH 3 Brachioradialis

Figure 2-9 Muscles position and sensors placements

Targeted muscles were selected, incorporating the motion which is applied.
EMG signals were captured from Brachioradialis, Biceps Brachii, and Anterior Deltoid
muscles using bipolar electrode placement and one common electrode as reference

(ground) placed on the bony part of the elbow as shown in figure 2-9.

This experiment used pre-gelled bipolar EMG sensor that mounted and placed
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on the targeted muscles. We used SENIAM recommendation as standard procedures
including how to clean the skin and to place the sensors. There are three major muscles
that used in the first experiment. The anterior deltoid, biceps brachii and brachioradialis
are selected as targeted muscles to be observed (see fig. 2-9). For each muscle, the
electrodes need to be placed at one finger width distal and anterior to the acromion and
the orientation direction of the line between the acromion and the thumb. By carefully
attach the electrode, we could standardize the electrode placement for the test subject in

experiments and reduce the inconsistency of the signal to be analyzed.

2.2 EMG Analysis

2.2.1 Pre-processing EMG Signal

The experimental setup involved multichannel EMG signal detection. Control is
achieved by the introduction of a threshold to discriminate the state of muscle activation.
The signals were processed with a conventional signal processing start from classical
EMG signal acquisition, EMG feature extraction, and EMG motion mapping/model (see

figure 2-10).

The acquired raw EMG signal was first processed to remove zero-offset,
rectified, and filtered to smoothen the signal. Although the necessary analog filter already
performed in the EMG measurement device, digital filter processing, as recommended by
the previous researcher[19]-[21] was conducted. The band-pass filter having a bandwidth
of 10-400 Hz was applied using the MATLAB signal processing toolbox to remove high
random frequency interferences, noise introduced in the digitalization process, and

remaining low-frequency noises from the motion artifacts, etc.
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Processing of the raw data is critical to remove baseline noises, motion artifact
noises, etc. An essential part of this paper is the analysis of the EMG signal. The acquired

signal is passed through equation 1 for rectification and smoothing (by moving average)

as shown equation (1) below.

M

1
Vnl =2 > [lxfn+ ]I N

Where M is the smoothing window size, and n is the current sampling point, x
is the raw EMG signal from DAQ. The output Y[n] represents the processed EMG signal
of the anterior deltoid, biceps brachii, and brachioradialis muscles, respectively[22]. After
getting the processed EMG signal, the signal was normalized to obtain a uniform

distribution discernable by a specified threshold. Equation (2) shows the operation.

Y[n] = Y[n]anin
Y[n]max) — Y[l min)

EMGporm =
(2)

Where Y[n] (min) is the minimum value of the processed signal, and Y[1n]max) is

the maximum.
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Figure 2-10 EMG Signal processing illustration phase

Discrimination of active motion was done by identifying different features of
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three EMG channels (Chl, Ch2, and Ch3), see figure 2-11. In this case, we used the
features as the control parameters. Three control parameters were applied; the mean of
the envelope signal, the maximum value of the amplitude, and the area under the curve.
These steps consisted of how to overcome the desired output from the signal features. As
earlier mentioned, to discriminate the activation state of the muscles from each channel,

we proposed the threshold method.

Robotic Parameter Control
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Figure 2-11 Robotic parameter control

The control parameters determine whether the threshold will be activated or not.
The threshold method determined muscle activation state (MS), which was expressed as
muscle activation (ON) or muscle deactivation (OFF). The ON state was returned if the
signal was above the baseline threshold of the envelope signal whereas, an OFF state
resulted whenever the rectified signal was below the baseline threshold. The choice of the
threshold was advantageous in aiding the removal of any residual noise of the envelope

signal [23]. The muscle state is defined as in (3):

1(ON) if EMGnorm > Th

MS() = { 0(OFF) else (3)
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Where EMGnorm is represented as normalized and filtered EMG signal and n
represent either channels 1, 2, or 3 of EMG. To evaluate the performance of the
controlling parameter, the successful mapping rate at the times that the robot arm mimics
the motion of the subject’s upper-limb motion correctly out of the total number of trials

was determined.

2.2.2 Feature Extraction

Feature extraction employed in this research was in time-domain. The method is
often used because of its quick and simple implementation. Time-domain features are
processed without any signal transformation for the raw EMG signals and evaluated based
on the value of signal amplitude that varies over time[l], [24]-[29]. The statistical
properties of EMG are always changing over time. However, researchers still prefer to
use time domain features because their computational is less complex as compare to those

of the frequency domain features [29]-[31].

Integrated EMG (IEMQ) or also called Integrated Absolute Value (IAV) : IEMG
/TIAV is normally used as an onset detection index that is related to EMG signal sequence
firing point. IEMG is the summation of the absolute values of EMG signal amplitude,

which can be expressed as follow:
IEMG = Y1 |Xi| “4)

Mean Absolute Value (MAV) is similar to IEMG that normally used as an onset
index to detect the muscle activity. MAV is the average of the absolute value of EMG
signal amplitude. MAV is a popular feature used in EMG hand movement recognition

application. It is defined as
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MAV =3, |Xi| (%)

Variance (VAR) captures the power of EMG signal as a feature. Normally,
variance is mean of square of deviation of that variable. However, mean value of EMG

signal is close to zero. Therefore, variance of EMG signal can be defined as
1 .
VAR = ngilez (6)

Root Mean Square (RMS): RMS is related to constant force and non-fatiguing

contraction. Generally, it similar to SD, which can be expressed as
RMS = % YM . Xi2 (7)

Waveform length (WL): WL is the cumulative length of waveform over time
segment. WL is similar to waveform amplitude, frequency and time. The WL can be

formulated as
WL = $M5YXi + 1 — Xi (8)

Zero crossing (ZC) is the number of times that the amplitude values of EMG
signal crosses zero in x-axis. In EMG feature, threshold condition is used to avoid from
background noise. ZC provides an approximate estimation of frequency domain

properties. The calculation is defined as

ZC = Zggll[f(xn — Xn41) N |Xn — Xn41| = threshold] ©)
_ (1, if x = threshold
flx) = {0, otherwise

Slope Sign Change (SSC): SSC is related to ZC. It is another method to represent
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the frequency domain properties of EMG signal calculated in time domain. The number
of changes between positive and negative slope among three sequential segments are
performed with threshold function for avoiding background noise in EMG signal. It is

given by

S§§C = Zg;zl[f[(xn - xn—l) X (xn - xn+1)]] (10)

(1, if x = threshold
flx) = {O, otherwise

2.3 Robot Control

The flowchart in figure 2-12 describes the flow from the beginning until the end

of the robot control.

Offline Robot

Robot conduct | ™
Matlab & robot initial setup: Motion 1
Serial Com; Servo Motor i=1:3;
SwitchOn,Servo Speed, Angle
Position and servo position function Robot conduct |_| [C]
{ Motion 2
. Motor
m;;—’—' Program Run ( Control
_ Robot conduct |_|
( Load & initialize data Motion 3
Measurements Calculate EMG Bandpass _ ,/
L Fiter 104001z ikt daming
Rectificate EMG ( Program Termination >
l Sto
[B] EMG Feature Extraction &
. < Normalization
Analysis
Calculate parameter control:
Mean, Max Amplitude and =
Surface area

Figure 2-12 Flow chart offline robot control.

Custom assembled R-R-R (three revolute joints) configuration robot arm
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illustrated in figure 2-13b, assembled from the Dynamixel unit was used in this research
work for experiments. Dynamixel AX-12A is a smart actuator with a fully integrated DC
servo motor module. The input voltage rating is around 9.0-12V, which can produce a
speed of 59 rpm with 6 rotation angle (max) of 300 degree, and resolution of 0.2930
deg/pulse. Four actuators were assembled as a robotic arm with two links and three joints,
as shown in figure 2-13c. In this research, two motors are needed to move the robot joint
according to the movement of the shoulder joint and elbow joint.

Robot-PC communication was achieved by using a serial connection between
MATLAB and the motor controller connected to the computer via USB. Servo motor
controller is a small size universal serial bus (USB) communication converter that enables
the interfacing and operation of the actuators from the computer. It also supports 3 pin

TTL connectors that used to link up with the Dynamixel motor.

N, ——
N S
4
\\4

~
-~

(b) R-R-R Robot configuration (¢) Assembled Dynamixel
(revolute joints) robot arm (2 links and 3

joints)

(a)Elbow motion

Figure 2-13 Robot arm configuration.
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All DYNAMIXEL

Power Line

Figure 2-14 Robot and computer communication

Serial Communication (8 bit) is applied as protocol type connection (see fig. 2-
14). U2D2 micro-B USB connected to the USB port of the PC with the enclosed USB
cable. 3Pin TTL connector used to link up with Dynamixel’s. An external power supply

12V should provide power to Dynamixel. reference baudrate is 115.200 with error 0.04.

2.4 Machine Learning Stage

Machine learning is a area in computer science where existing data are used to
predict, or respond to, further data. Pattern recognition, computational statistics, and
artificial intelligence are closely related by machine learning fields. Machine learning is
important in areas like image recognition, filtering, classification, clustering, predicting,
and others where it is to make decision, to write algorithms and to perform a task[32].

The main role of the machine learning module is to classify the patterns extracted from
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the EMG signals into their respective movement. In this study, the classifications of EMG
signals are done using major machine learning models (i.e., decision tree, k-Nearest
Neighbor (KNN), Support Vector Machine (SVM), Ensemble from MATLAB statistic

and machine learning toolbox (version 2019a).

|Measuremen> Feature Extraction > Machine Learning >| Classification >

EMG data is
divided into parts  Signal Processing

by time 4 5 : 8 A
PR Machine Learning Algorithm
No division — (1] Decision Tree (medium)

[2] Decision Tree(fine)

e MAV [3] KNN(weighted) S

EMG Data 2 division zC ‘ [4] KNN(flne) Motions

Without W'- (5] SVM(cubic)

TKEO $sC [6) SVM(fine gaussian)

m 3 division [7] Ensemble(bagged trees)

[8] Ensemble(subspace KNN))
Sampling rate: AN /L /
s
6 Types of processed data 8 ML Types
2-3seconds . — 4 Classes
Totally 48 discrimiation models E=

Figure 2-15 Proposed discrimination models for comparation.

Totally 48 discrimination models have been compared (see figure 2-15). There

are combinations of EMG data contained 3 channels divisions, using with/without TKEO,

feature extractions (MAV,ZC,WL and SSC) and 8 machine learning types.

Teager—Kaiser energy operator (TKEO) was used for enhancing the amplitude
and frequency of TD EMG signals without converting those signals to the FD see figure
2-16 [41-43]. TKEO was performed to enhance muscle activation detection. TKEO
requires only three samples to estimate the signal energy at each sample time, resulting
in low computational demands, which even enables semi real time applications such as

EMG driven (training) devices. TKEO as data preconditioning for autonomous burst
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detection during real life.
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Figure 2-16 Pre-processing EMG Signal (Signal divisions and TKEO)

2.4.1 Decision tree.

A decision tree is a non-parametric methods with a similar structure to a tree-

like graph used to make decisions. It has three kinds of nodes: decision nodes, chance

nodes and end nodes. Decision trees, or classification trees and regression trees, predict

responses to data. To predict a response, follow the decisions in the tree from the root

(beginning) node down to a leaf node. The leaf node contains the response. Classification

trees give responses that are nominal, such as 'true' or 'false'. Regression trees give

numeric responses[32].

2.4.2 K-Nearest Neighbor

The others non-parametric supervised classification algorithm is called K-

Nearest-Neighbors (KNN), which is effectivr yet simple in many cases. The KNN

classifier is considered as one of the most popular classifier for pattern recognition due to
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its effective performance with efficient results and its simplicity. It is commonly used in
the ares of pattern recognitions, machine learning, text categorization, data mining, object
recognition and others. KNN algorithm classifies by analogy i.e. by comparing the
unknown data point with the training data points to which it is similar. Similarity is
measured by Euclidean distance. The attribute values are normalized to prevent attributes
with larger ranges from outweighing attributes with smaller ranges. In KNN classification,
the unknown pattern is assigned the most predominant class amongst the classes of its
nearest neighbors. In case there is a tie between two classes for the pattern, the class that
has minimum average distance to the un-known pattern is assigned. Through the
combination of a number of local distance functions based on individual attributes, a
global distance function dist can be calculated. As given in equation 11, the simplest way

is to sum up the values:
Dist.(XT,X) = ¥, dist A;(AT - A, X - A) (11)

Where X' is the test tuple, X is a nearest neighbor, and Ai (i=one to n) represents

the attributes of the data points.

The weighted sum of local distances is known as global distance. The attributes
Aj can be assigned specific weights wi to depict their level of importance in deciding the
appropriate classes for the samples. The weights usually range between 0-1. Irrelevant
attrib-utes are assigned a weight 0. Thus, equation (12) can be modified and written as

equation:

Dist. (XT,X) = Z?:l w; X dist Ai(AT 'Ai,X Al) (12)

26



2.4.3 Support Vector Machines

Support vector machines are supervised learning models with associated
learning algorithms used for binary classification. SVM used for classification and
regression analysis. SVM training algorithm builds a model that assigns examples into
categories. The goal of an SVM is to produce a model, based on the training data, that
predicts the target values. In SVM nonlinear mapping of input data in a higher-
dimensional feature space is done with kernel functions. In this feature space a separation
hyperplane is generated that is the solution to the classification problem. The kernel
functions can be polynomials, sigmoidal functions, and radial basis functions. Only a
subset of the training data is needed; these are known as the support vectors[33]. The
training is done by solving a quadratic program, which can be done with many numerical

software programs such as Matlab.

2.4.4 Ensemble

A machine learning method that combines several base models in order to
produce one optimal predictive model is called by Ensemble methods. This learning
algorithm are build a set of classifiers and then classify new data points by taking a
(weighted) vote of their predictions. Ensemble method is base on Bayesian averaging, but
more recent algorithms include error-correcting output coding, boosting, and bagging[34].
This learning classfiers technique is a set of classifiers whose individual decisions are
mixed in some way typically by weighted or unweighted voting to classify new data. One
of the most active fields of research in supervised learning has been to study methods for
constructing good ensembles of classifiers. The main finding is that ensembles are often

much more accurate than a classifiers that make them rise.
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2.5 Target Upper Limb Motion

Human upper-limb movement is one of the most complex motions and involves
many components such as musculoskeletal, nerves, and others to support multiple degrees
of freedom. The upper limb conducts many motions that require coordination of the joint,
which consists of many ranges of motions for daily life tasks. To make the scope of the
research more specific, we focus on the shoulder and elbow joints moving separately to
represent single DOF movements and a combination of two joints to achieve multiple
DOF. The combination of three motion gesture is as illustrated in figure 2-17. Shoulder
motion allows three DOFs (i.e., abduction / adduction, flexion / extension, and internal /

external rotation). Elbow motion has two DOFs (i.e., flexion / extension and supination /

pronation)[21], [35].
F" P h
) § .~ 4

Motion 1 Motion 2 Motion 3

Figure 2-17 Motion illustration
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Chapter 3 Mapping EMG signals generated by Human
Elbow and Shoulder Movements to 2 DoF Upper-Limb

Robot Control.

3.1 Background

In the recent past, robots have turned to be an integral part of the society with
applications in industrial processes and manufacturing, military, welfare and healthcare
systems, transportation, and autonomous vehicles, to name a few[1], [2]. Robots in
automation are fueled by the inherent virtue of machines in doing monotonous tasks with
repeatable precision over a lengthy duration. In contrast to human labor, robots require
fewer safety precautions, which makes them ideal for handling dangerous elements and
disasters[1], [2]. As an application area, the COVID-19 pandemic that has hit the world
is a good case for the usage of robots in monitoring and delivery of essential services

safely without compromising the safety of the medical staff [4].

Robots have been in use in various aspects of human life, as earlier mentioned.
Regarding the control mechanism, modes of application of robot can be broadly
categorized as autonomous, cooperative, and or hybrid mode[9]. Autonomous mode, in
this case, is defined to capture all control schemes that do not require human intervention.
This is the case in most industrial robots, as well as the highly anticipated autonomous
cars. In cooperative mode, the robot is driven by human input where the robot act to
respond or mimic the human input. An example of this scheme would be crane operation,
robot control using joysticks, and others. The hybrid model would be a case where the

robot has an element of autonomy as well as input control initiated by a human. In both
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the hybrid and cooperative model, an element of human-robot collaboration (HRC) is

present[12], [15], [36]-[38].

HRC focuses on cooperative usage of either workspace, control scheme, or task
completion. From the literature review, much more fine-tuning of the current robot system
is needed to integrate robots in daily lives without being overly intrusive[2], [7], [8].
Attempts like the miniaturization of robots to fit in human workspaces is a step pursued
by developers to achieve this integration. This context, called agent autonomy, closely
considered leader-follower relationships that express how much robot motion is directly

determined by humans for conducting tasks[9],[12].

One of the significant aspects of HRC is the control mechanism employed.
Conventionally, interaction with a robot is achieved with physical joysticks, keyboards,
and other hardware systems[12], [15], [36], [37], [39]. The limitation with this input
system is the level and quality of interactivity since they need to be physically attached.
An alternative to this provision is the use of wireless and wearable devices. Wireless and
wearable devices as a means of robot interaction open the control scheme to be versatile
and user-friendly. In this research, the wearable control system was employed as it availed

advantages, as is discussed below.

With the advent of computing technologies, fine-tuned wearable devices have
hit the market. Of particular interest to the discussion is devices that can record
physiological signals and process it to give meaningful information like heart rate, muscle
activities, and such. All such signals emanating from the human body, jointly referred to
as biopotential signals, are present in the human body and can be integrated to enhance

the quality of life[5], [40]—[42]. Particularly so, in cases where there is a physical inability,
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biosignals have been applied to restore control to patients and disabled individuals as well.
An example of this is the use of prosthetics. Integrating such high-end devices with an
HRC system would be advantageous in the versatility and universality of the control
schema. In this paper, we present one of the readily available signals from the skin surface,

electromyography (EMQG).

Biopotential signals have been proposed to control robots in literature. Fukuda
et al. [11] conducted teleoperation involving a human-assisted robotic arm using EMG
signals. The systems used six EMG channels and a position sensor to capture grasping
and manipulation signals. Artemiadis and Kyriakopoulos[12], [13] proposed a
methodology for controlling an anthropomorphic robot arm in real-time and high
accuracy using EMG of the upper limb using eleven muscles and two-position tracker
measurements. Benchabane, Saadia, and Ramdane-Cherif [14] introduced a new
algorithm for real-time control of five prosthetic finger motions and developed a simple
and wearable myoelectric interface. Liu and Young[15] proposed a practical and simple
adaptive method for robot control using two channels for conducting upper-arm motion.
Junior et al. [16] proposed a surface EMG control system to control the robotic arm based
on the threshold analysis strategy. In their proposal, the EMG signal was acquired and
processed by a conditioning system using LabVIEW software that gives flexibility and a

fast way to reconfigure the settings for controlling an actuation system device.

EMG signals are prone to interference by noises from power lines,
electromagnetic radiation, cable movements, skin impedance, among others[15], [24],
[43]. For this reason, signal processing is an indispensable step in the control algorithm.

The general outline of the control algorithm can be described as follows. From targeted
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muscle, the acquired raw EMG signal is conditioned to eliminate noise, relevant features

are extracted, and finally, control is performed based on the resulting signal.

EMG control has been applied in various areas of robot control. The control
systems in literature can be categorized as pattern and non-pattern recognition systems
[37]. The pattern recognition system detects patterns and EMG signals associated with
the task. This is the case in hand pattern recognition, finger patterns, and other systems
proposed to recognize the current state of the hand [1], [8], [25]-[28], [30], [39]. On the
other hand, nonpattern recognition controls are practical and often used as control
schemes. The objective, in this case, is to characterize motion, gripping force, rotation of

angles, and others [8], [11], [15], [19], [23], [28], [44], [45].

The main objective of this experiment is to investigate the application of
wearable EMG device to control a robot arm in real-time. The focus is on EMG signal
control corresponding to upper-limb motions of the arm and to analyze its relations. The
control scheme is non-pattern recognition in nature, specifically ON/OFF control with
threshold level control. This motivation for the usage of this scheme was informed by its
simplicity and low computation cost. However, the method has been reported to have

reduced accuracy compared with other pattern-based methods [25].

The authors in [46] proposed the use of pattern recognition control mechanism
for a malfunctioning upper-limb prosthesis. In this control scheme, only a single degree
of freedom (DOF) movement (hand open/close or wrist flexion/extension) was supported
at any one time. This paper target multiple DOF with fewer electrodes on the upper limb.
Besides, the limitation of the DOF, conventional amplitude-based control method has a

slow response and takes time for the users to learn to contract/co-contract the targeted
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upper-limb muscles[1], [22], [26], [27], [46].

In this research, the EMG signal corresponding to upper-limb motions consisting
of elbow and shoulder joints is discriminated to control a robot arm applicable in the
teleoperated robot cooperation system. A low-cost wearable embedded system was
customized to conduct three motions corresponding to the motion of the elbow joint and
shoulder joint in real-time to the robot manipulator. The robot manipulator is a compact
serial communication robot and suitable for use in home or experiment environments.
Three pairs of surface EMG sensors were mounted on the Anterior deltoid, Biceps brachii,

and Brachioradialis as the target muscles

Three different motions were proposed for analysis; the elbow flexion as motion
1, shoulder flexion as motion 2, and a combination of elbow and shoulder flexion
movement called the uppercut motion as motion 3. In the recording of the EMG signal,
the upper limb of motion 1 and motion 2 are limited to a range of up to 90 degrees for
modeling of the relation of EMG and joint angle. The contribution of this study is the
development of a control scheme for a robot arm based on the Electromyography and the
influence of the position of the EMG muscle targeted and its relationship to upper-limb
movements. The targeted muscles are those that play an active role in the movement of
the upper arm involving the elbow and shoulder joints. The initial hypothesis from this
research is that the brachioradialis muscle (EMG channel 1/CH1) and biceps brachii
(CH2) will play a role in movement 1, while the anterior deltoid muscle (CH3) will play

a major role in motion 2 and motion 3.
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3.2 Experiment

Five healthy, right-handed subjects (all males) with ages ranging from 20 to 40
years participated as volunteers for the experiment. All of them provided written informed
consent following approval procedures (number 27-226) issued by Gifu University ethics
committee. The issue is the application to motion intention estimation and device control
based on biological signal measurement considering user-specific physical characteristics
and environmental characteristics. The experiment was conducted with subjects seated
comfortably in a chair with right arm rested (0-degrees). For familiarization, the
participants performed several arm motions prior to recording as well as get a proper

threshold for individual calibration.

During recording, the participants were instructed to raise and lower the arm
(motionl) within 2 seconds. Every motion was repeated 10 times in offline mode. In
online mode, the robot was moved with successive arm motion for visual feedback. The
robot arm control was initially conducted in offline mode. The EMG data loaded as an

input for controlling the robotic arm.

_ (1(ON) if EMGnorm >Th
MS(m) _{ 0(OFF) else (13)

From formula (13), if we represented MS(CH1) as A, MS(CH2) as B, and
MS(CH3) as C, discrimination of the active motion is handled by the control algorithm
with conditions shown in (14). Motion 1, motion 2, and motion 3 are deduced conditional
manipulations of signals from the three channels. In particular, when the EMG signal
from both CHI and CH2 is above the baseline TH (threshold), and CH3 is below the

threshold; the command to activate motion 1 is classified as ON, as shown in equation 14.
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Similarly, if either CH 1 or CH2 is lower than the threshold and CH3 is higher than the

threshold, then motion 2 is ON. Finally, motion 3 is solely dependent on all channels that

are greater than the threshold.

If A >Thand B> Thand C < A then It is Condition 1

If A <Thor B<Thand C > Ththen It is Condition 2

If A >Thand B> Thand C > Thlt is Condition 3

Table 3-1 Discriminating of EMG and robot angles.

EMG Upper-Limb Robot Arm
CH1 CH2 CH3 Status Angle 01 Angle 02
ON ON  OFF Motion 1 0 90°
OFF ON ON Motion 2 90° 00
ON ON ON Motion 3 90° 90°
OFF OFF OFF Do nothing 00 00

(14)

Table 3-1 reports the discriminations status for each EMG signal related to the

movements of the robot arm. Angle 0, (shoulder joint) and 6, (elbow joint) are joint angles.

3.3 Results and Discussion

The following section describes the experiment, signal processing, and robot

control model results. The output of the processed EMG is used for controlling the robotic

manipulator.
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Figure 3-1 Sample electromyography (EMG) signals for different motion.

Figure 3-1 displays three channels and raw EMG signals matrix captured for 2
seconds. From the figure, motion 1 produces a higher EMG signal on Ch1 (column 1) and
Ch2 (column 2) compared to Ch 3 (column 3). The second row describes the results of
motion 2, the muscles that are most active to produce the EMG signal voltage are the
anterior deltoid (Ch3) and bicep brachii (Ch2) muscles, while the brachioradialis muscles
tend to produce minimal tension. Meanwhile, motion 3 is seen in the third line, where all

channels appear to generate EMG signal activity.
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Figure 3-2 Rectified EMG signals.

Figure 3-2 displays the result of EMG after rectification. Rectification basically
yields the magnitude of the signal without its polarity. The full-wave rectified results
show oscillatory input of the muscles from the neural activation that EMG signals. This
is inherent in all EMG signals, and hence, further processing is necessary to ensure

usability. Further processing is performed to arrive at a processed signal.

The results of the normalized and processed signal are reported in figure 3-3.
From the figure, the onset of raising hand motion is clearly discernable as well as lowering
motion. From the design of the experiment, 2 seconds was found sufficient to capture all
the motion. Motion 3 had the strictest time budget, while motion 1 had excess time that

resulted in the capturing of motion not related to the research. This excess motion
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Motion 1

0 200

400

600 800 1000 1200 1400
Time (ms)

Motion 2

1600

1800

2000

Ch1
Ch2
Ch3

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (ms)
Motion 3
I [ | I I I I | Ch1
Ch2
Ch3
) | | -
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (ms)

Figure 3-3 Normalized processed EMG signals.
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Normalization

Figure 3-4 reports the comparison of three control parameters; mean of the
envelope (shown as Mean in the figure), maximum amplitude (Max), and area under the
curve (AUC) of the envelope signal (Area). From the results, the AUC of the signal
displays more consistency in the accuracy of successful control for each motion better
than the Mean and Max methods. Besides the comparison of accuracy, the consistency of
the results for different motions was an important factor to consider in choosing the model
for the robot arm control. It can be seen in figure 3-4 that the area shows the highest level
of accuracy compared to other parameters for each movement. Also, the consistency,
calculated as average error for each control parameter, was least in the AUC method. The
average error of AUC was 10.1% compared to the Mean and Max methods that reported
an error of 13.1% and 14.3%, respectively. From this, AUC parameter is maintained in
the rest of the document for inter-subject evaluation of performance.
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Figure 3-5 Upper pictures for subfigure (a),(b), and (c) are shown each robot

arm motions, besides lower pictures show discrimination of the EMG signal motion 1,

motion 2, and motion 3 respectively.
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Figure 3-5 illustrates the robotic arm motion corresponding to the discriminated
motion. From Figure 3-5(a), which corresponds to Motion 1, brachioradialis muscle
(CHI) and biceps brachii (CH2) surpass the baseline threshold. In figure 3-5(b) for
motion 2, CH2 and CH3 surpass the threshold, with CH2 being more dominant. In motion
3, all the channels surpass the threshold. From this, it can be seen that anterior deltoid
muscle (CH3) plays a major role in motion 2 and motion 3. Biceps brachii (CH2) is
equally significant in motion 2 and 3 but more pronounced in motion 3. This can be
understood intuitively by the extended nature of motion 2, compared to the clenched
elbow joint in motion 3. A visualization of motion and corresponding robot manipulation

can be found in this link: https:/rb.gy/Ifqliv. The video illustrates controlling a robotic

arm using EMG signals in an offline system.
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Figure 3-6 Percentage of successful control of the robot arm.
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The results of the comparison of intersubject performance carried out in the
experiments are shown in figure 3-6. It reports the accuracy of the output of successful
robot control out of the repetition for the five subjects. Subject 1 have an overall
accuracy : 83.3%, subject 2 :80%, subject 3,4 and 5 are 73.3%, 83.3% and 63.3%
respectively. Motion 1 get highest accuracy 100%,beside motion 2 get lowest 50%.

Subject 5 had the lowest accuracy at 63.3%.

This was attributed to inconsistent muscle activity during recording. Muscle
inconsistency resulted from excessive force employed during motion that is not part of
the target muscle activity. This included wrist motions (fist crunching, flexing, or
rotations), among others. The discrepancy in the muscle activation introduced difficulty
in proper threshold determination. Additionally, we noted timing errors in motion 3 to be
a challenge for the two subjects. Besides the motion artifacts, noise and other crosstalk
artifacts affected the quality of the signal and thereby affected the prediction of intention
from the signal, which is expected from EMG processing [1], [26], [43]. This presented
as overshoots and oversaturation in the amplification gain whenever the users overexerted
the motions. This was remedied by familiarization repetitions and feedback from the

experimenter during preparatory steps.

From the above, the implementation of upper arm control using the two main
joints of the elbow and shoulder is possible. The EMG signal obtained from the movement
of the upper arm can be observed and the movement mapped. Based on Farina et al. [47],
there are several criteria for implementing ideal prosthetic arm such accuracy, intuitively,
robustness, adaptive for the user, the minimum number of electrodes, short and easy

training/calibration, feedback on relevant functions/close loop control, limited
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computational complexity, low consumptions, response time. There is no ideal system to
date that meets all of the criteria, but several researchers have tried at least some of these
criteria. In this research, we have attempted to optimize target muscle and characterize
the upper-limb motion for 2D robot control. The challenge with the approach is a priori
knowledge of the sensor data required to inform the choice of threshold. An adaptive
threshold determination algorithm and pattern recognition will be explored to further the
research. Overall, the development of a measurement control system that improves

accuracy, robustness, response time can be attained from this control scheme.

This research presented an EMG investigation of the upper-limb motion-based
interface for human-robot interaction in terms of teleoperation tasks. This research
demonstrates that three EMG signals that correspond with upper-limb motions have been
discriminated and applied successfully for controlling the robotic arm. The area under the
curve parameter control yielded more consistency in performance better than the mean
and maximum amplitude signals of parameter control. Based on the model’s
discrimination that generated from the EMG signals envelope using moving average
processing signal, the result shows that models can be used for all subjects to control the
robotic arm for conducting single and two DOF movements with its simplicity and low
computation cost. Also, the performance of the systems statistically describes the
accuracy of all motion for all subjects that varies from 50% to 100%. Subject 1 have an
overall accuracy : 83.3%, subject 2 :80%, subject 3,4 and 5 are 73.3%, 83.3% and 63.3%
respectively. Motion 1 get highest accuracy 100%,beside motion 2 get lowest 50%.
Subject 5 had the lowest accuracy at 63.3%. Further developments will include an
improved control scheme using pattern recognition, and better methods can be used to

tackle the limitation of the system.

43



Chapter 4 Minimum Mapping from EMG Signals for
Controlling Two DoF Upper-Limb Robot using Machine

Learning

4.1 Background

Electromyography (EMG) has been considered an important area for study,
especially as biological signal control to promote quality of life and self-reliance. There
are several areas of applications of EMG, such as disease diagnosis, rehabilitation
evaluation, and control strategy for the assistive device. EMG provides rich information
obtained by muscle contractions [1], [3], [5], [8], [23], [24], [47]-[49]. Recent research
developments in the field of robots have led to robotic arm control with very complex
mechanical capabilities, sensor technology, and control algorithms that do not necessarily
make it easier for users to intuitively control robots [1], [24], [26], [47]. Hand gesture
recognition (HGR) is an important part of human-robot interaction that studies to
recognize commands from humans by the development of robot technology. HGR models
are human—computer systems that predict what motions or gestures were conducted and
when a human conducted the gesture [1], [8], [23], [24], [26], [49]. Human-robot
interactions (HRI) are a wide research field. Currently, those systems are used in many
applications and researches such as robot control systems [11-23], medical recognitions
and rehabilitations [6], [60]-[62], and intelligence assistive devices [8], [11], [17], [36],

[54], [63]-[67].

There are several issues related to the process of controlling the robotic arm

using the EMG signal. Noise, motion artifact, and crosstalk have an impact on the
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prediction intention. The high variability of EMG signal amplitude estimation is a
challenge in developing the control system [3,23,35-38]. Ideally, an assistive upper limb
robotic arm system should fulfill several criteria such as an intuitive interface for the user;
robust system; adaptive to the user; minimal number of sensors and not sensitive to the
precise muscle placement; short and easy training/calibration (possibly without training);
provide feedback (closed-loop control); low cost and simple computational; and produce
good estimation with perceivable delays (real-time) [4,8,14,25,29,39]. Laksono et al. [3]
proposed a model mapping for three EMG channels from three different muscles to
control the robotic arm to predict three movements of the upper arm. This simple model
can discriminate against three upper arm movements by considering the influence of the
targeted muscle position when doing the movement; the characteristics of the muscles
that perform the activity will play an important role in carrying out the movement. Even
though the model was capable of performing motion mapping, the overall reported
accuracy in 76.64% was still not optimal. The existing research on the classification of
hand movements based on EMG signals still faces many challenges such as weak
robustness, the minimum number of sensors, short training data, low computational
process, and good prediction with perceivable time delay [2,4,10,34,39—43]. To address
these challenges, we propose models for classifying upper arm movements that conducted
1- and 2-degrees of freedom (DoF) motions using machine learning. The HGRs include
three movements (elbow extension, shoulder extension, combined shoulder and elbow
extension), and a case with no movement (default condition). Simultaneous and
independent control of multi degrees of freedom (DoF), such as elbow and shoulder joints,
is the main target of the machine learning-based model for controlling robotic arm using

electromyography (EMGQG) signal [18]. This research also focused on the positioning of
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the EMG sensor on the target muscles that are directly involved in the movement of the
upper arm. In this research, we introduce machine-learning models for controlling the
robot arm that EMG signals are obtained from three muscles as a multi-channel (three
channels of input). This three-motion produced four class predictions consist of motion

1, motion 2, motion 3, and no motion.

Machine learning has been used extensively in HGR and other EMG-related
studies targeting different functionalities. Several kinds of research focusing particularly
on elbow and shoulder movements have been reported in Triwiyanto et al. [45], Antuvan
et al. [55], Martinez et al. [56], Hassan, Abou-Loukh, and Ibraheem [28], Young et al.
[77], Jiang et al. [46], and Tsai et al. [47], classification of upper limb motion using
extreme learning machines by Antuvan et al. [74], using Support Vector Machine (SVM)
[6,8,19,48], investigation of shoulder muscle activation pattern recognition using
machine learning by Jiang et al. [78], and detection movements using EMG signal for
upper limb exoskeletons in reaching tasks by Trigili et al. [80]. These papers verify the

suitability of EMG signals for biopotential intelligent robot control.

The key to any EMG control is the measurement system in use. As expected,
accurate EMG signal recording increases the performance of the pattern recognizing
model. In this paper, the experiment was conducted systematically to investigate the
impact of using Teager—Kaiser energy operator (TKEO) and variable segmentation levels
of EMG signal input. To get better classification performance and try to tackle the
challenges, we propose the following framework to classify EMG signals for controlling
a robotic arm. The use of multi-channels for data retrieval has aided in recognition as it

covers more muscle areas. Hence, in this research the focus of EMG data collection is in
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three positions, namely brachioradialis, biceps brachii, and deltoid to move the robotic
arm. EMG processes such as data segmentation had similarly been shown to better the
results of discriminative models[67]. We performed three levels of data segmentation. On
the first level, no segmentation was performed. On the second and third level, the EMG
signal was split into two or three segments of data and treated as distinct input to feature
extraction process. To overcome muscle activation signals, TKEO was used for onset
detection[79], [81], [82]. TKEO method has been mainly used to enhance the magnitude
and frequency of time-domain signals without requiring the conversion of those signals
to the frequency domain [41]. The other preprocessing processes, such as normalization,
rectification, and smoothing signals using moving average, are commonly used by many

researchers [29], [30], [79], [83].

Feature extractions take an important role in machine learning. Features were
extracted from the different EMG signal sources. The feature of EMG signals commonly
includes time-domain (TD) and frequency-domain (FD) feature. Feature extraction
proposed in this paper was multi-feature TD, which includes the mean absolute value
(MAV), zero crossings (ZC), slope-sign changes (SSC), and waveform length (WL) [29],
[79], [83]-[85]. A calibration phase was utilized to acquire training phase data. From this,
we evaluated the features as well as extent of the sampled data. In total, four classes
(motion 1, motion 2, motion 3, and no motion) were classified. Machine learning model
classifiers were used as a feasible decoder to predict the four movements. The results
obtained in this study were applied online for real-time implementation. The performance
shown includes a fairly accurate and consistent prediction accuracy. Three metric
performances; accuracy, recall, and precision were evaluated for evaluation of

performance. In real-time processing, there were various optimal controller delays in the
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literature review that reported below 500 ms which is still feasible for real-time robotic

control [23], [24].

In this paper, we deployed a teleoperation HRI cooperating between surface
EMG and an upper-arm robotic, to fast-detect the user’s hand gesture intention. We
implemented an offline supervised machine-learning algorithm, using a set of five
subject-independents. The proposed system established various scenarios consisting of
three-level variables of segmentation signal, using TKEO, and classification types of the
machine-learning model, such as decision tree, k-Nearest Neighbor (KNN), SVM, and
Ensemble. All machine-learning algorithms are provided in the classification learner
application in Matlab®. The significant contribution of this study is to provide the results
of investigations regarding the optimal performance of the supervised machine-learning
model using limited data training to classify upper arm motions based on three EMG
signal channel inputs from three different target muscles and to control the robotic arm in

teleoperation HRI simultaneous.

4.2 Experiment

Five healthy subjects participated as volunteers for the experiment. All of the
participants provided written informed consent letters following approval procedures
(number 27-226) issued by the Gifu University ethics committee and complying with the
Helsinki declaration. This experiment explored machine-learning approaches that can be
useful in the prediction of elbow and shoulder joint movements classification as an
alternative to the modeled equation for robotic controlling. The proposed experiment
system used to describe the process of controlling the robotic arm using EMG signal

classification is illustrated in figure 4-1. The subjects conducted upper limb motion which
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was similar to our previous research. The experimental setup that included EMG
measurements system, muscle position, data acquisition, data analysis, and robotic

control is described by Laksono et al. [3].
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Figure 4-1 The proposed system for electromyography (EMG) controlled robotic arm.

4.2.1 Feature Extraction Stage

EMG signals are easily corrupted by the environment in the data acquisition
process. Motions artifacts, crosstalk, baseline offset, and power line frequency may lead
to distortion in the process classification [41,48,52,54,56,57]. We used an isolator to
reduce the powerline frequency noise. Three EMG sensors were used to capture EMG
signals and then they were used as inputs for the learning process. Teager—Kaiser energy
operator (TKEO) was used for enhancing the amplitude and frequency of TD EMG
signals without converting those signals to the FD [41-43]. TKEO was performed to

enhance muscle activation detection. The TKEO is denoted in Equation (14):
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ylx@] =22 —x(@+ 1) x (i — 1) (14)

Then, the conventional EMG feature extraction methods were employed to
extract meaningful information for EMG signal classification. Each of them is explained

below.

Mean absolute value (MAV) was used as an onset index to detect muscle activity.
MAV is the average absolute value of EMG signal amplitude. MAV is a popular feature

used in EMG hand movement recognition applications [85]. It is defined as

M
1
MAV = MZIX“ (15)
1=

Waveform length (WL): WL is the cumulative length of the waveform overtime
segment. WL is similar to waveform amplitude, frequency, and time [85]. The WL can be

formulated as

M-1
WL = ZIXi+1—Xi| (16)

i=1

Zero crossing (ZC) is the number of times that the amplitude values of EMG

signal cross zero in the x-axis. In the EMG feature, the threshold condition is used to
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avoid background noise. ZC provides an approximate estimation of frequency domain

properties [85]. The calculation is defined as

-1

N
ZC = Z [f (cn — Xpg1) N |, — Xpy1| = threshold]
n

=1

(17)
1, if x = threshold

fx) = {O, otherwise

Slope-sign change (SSC): SSC is related to ZC. It is another method to represent
the frequency domain properties of EMG signal calculated in the time domain. The
number of changes between positive and negative slope among three sequential segments
is performed with threshold function for avoiding background noise in EMG signal [85].

It is given by

N-1
S5C = [f[(xn - xn—l) X (xn - xn+1)]]
n=2
1, if x = threshold (19
, if x > thresho
fe) = {O, otherwise

4.2.2 Machine Learning (ML) Stage

The classification started with preparing data for the learning process. Data was
generated from three EMG channels recorded at a sampling rate of 2000 Hz with
recording times varying between 1.5-3 s per motion stored in the workspace. In total, five
subjects performed three motions. The data were segmented as follows; 60% for training

and 40% for performance validation.

51



As mentioned, 40% of the data was reserved for testing/inferencing. The
machine learning models operate as shown in figure 4.2. In this case, the learning
algorithm is fed with a pair of training data, which conventionally includes a response
signal and a corresponding correct signal, which acts as a teacher. After the learning phase,
inferencing can be made with the generated model. This output prediction based on
weightings of the learned model for accurate inferencing; the data supplied should be

novel to the model and hence the separation into testing data employed in the model.
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Figure 4-2 Classification models for comparative evaluation.

Figure 4-2 illustrates the proposed machine learning model subdivision (six
scenario models) utilized in the systematic investigation of optimal controller. The data
1s subdivided into two groups; processed with TKEO and without TKEO dataset. For each
of the datasets, three variations of data are applied with the variation of dividing the signal
into no segment, two segments, and three segments as inputs for training. Feature
extraction is performed on each of the models to arrive at a trained model. A total of 48

types of trained models were investigated.
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We used four features (MAV, WL, ZC, and SSC as multi-features from each
channel) for training in one segment as an input. As such, 13 predictor signals (features)
and one correct “teacher” signal were fed to the training model. For the second data input
(using two segments input for each channel), we used similar features resulting in 25
predictors. Then, three segments were input in 37 predictors. It is worth noting that the
same data was fed to the two distinct groups for comparison purposes. In both cases, we

used five-fold cross-validation for accuracy estimation and to avoid overfitting.

A Matlab classification learner application that performs multiclass error-
correcting output code with the different learner models was employed. In this case, eight
types of machine learning learner models were employed; decision tree (medium),
decision tree (fine), KNN (weighted and fine), SVM (cubic and fine Gaussian SVM),
Ensemble (bagged trees and subspace KNN) were used. The hyperparameters for each
classifier were initialized with the default setting. All ML methods performed training
data properly. Based on the prediction performance (see table 4.1), KNN (fine) and
ensemble (subspace KNN) algorithms had the best accuracy for the method using TKEO
and the method without using TKEO, respectively. These models were used for further

analysis, shown in the next section.
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Figure 4-3 Schematic view of neural network for machine learning
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In this research, a binary classifier used in supervised learning used to classify a
given input data. It comprises of an input, weight, threshold, summer, and an activation
function related to which kind of machine learning model used. The neural network model
(see figure 4-3) contains three layer (inputs(xi), a hidden layer, and outputs(yi)), we
proposed multiclass classification model for controlling robotic arm. As each signal is set
on matrix, we set three kind of EMG signals input. Three kinds inputs are 13 (3 channel
x 1 division x 4 features + 1 correct signals), 25 (3 channel x 2 division x 4 features + 1
correct signals) and 37(3 channel x 3 division x 4 features + 1 correct signals) as input
predictors. The hidden layer is activation functions which based on what kind of machine
learning model are used such as decision tree (medium), decision tree (fine), KNN
(weighted and fine), SVM (cubic and fine Gaussian SVM), and Ensemble (bagged trees
and subspace KNN). The outputs are four classes (motion 1, motion 2, motion 3, and no-
motion).

Table 4-1 Machine learning type parameter setting

Decision Tree (medium| + Easy to prepare, to read and to | Maximum numbers of splits = 20,

tree) interpret.

Decision Tree (fine tree) | + Less data cleaning required Split criterion = Gini’s diversity index,

— Small data can be instability

IKNN (weighted) + Quick calculation and prediction Maximum numbers of splits = 100;

+ versatile : easy to make prediction

— Large and high dimension dataset

IKNN (fine) Split criterion = Gini’s diversity index
problem
— Sensitive to noise data

SVM (cubic) + Works well with unstructured and | Number of neighbors = 10; Distance]

semi structured data like text, Images | metric = Euclidean

54



+They used kernel for training
— finding good kernels parameters

are not easy

SVM (Fine Gaussian) and trees. Distance weight = square inverse;

Ensemble (Bagged Trees | + Multiple models are used to make | Number of neighbors = 1; Distance

prediction metric = Euclidean
Ensemble (Subspace| + Reduces generalization error | Distance weight = equal,;
KNN) during prediction

— slow calculation and prediction

Decision tree is often used as machine learning methods. The hierarchical
structure of a decision tree leads us to the final outcome by traversing through the nodes
of the tree. Each node consists of an attribute or feature which is further split into more
nodes as we move down the tree. In this study, we used Gini’s diversity index (see
equation 19) for splitting criterions and maximum number of splits 20 (fine tree) and 100

(medium tree)

Gini = 1 - XL, (p)? (19)

where pi is the probability of an object being classified to a particular class.
The degree of Gini index varies between 0 and 1, where 0 denotes that all elements belong
to a certain class or if there exists only one class, and 1 denotes that the elements are

randomly distributed across various classes.

One of the classifications of machine learning methods with advisory learning is
KNN. Under the structure from the training dataset, the classification is carried out

according to the nearest distance to points in a training data set. In this study, we used
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model type fine KNN with £ = 1 selected, and Euclidean distance calculation formulas
were used. The choice of the K value to be used varies according to the dataset. As a rule,

the fewer neighbors (a small number K) we have, the more we are subject to under-fitting

Al x) = = X'D2+ Xz = X'2)?2 + -+ (X — X'p)? (20)

SVM has extensively discussed resolution methods for pattern-based classification for
control applications. Two different kernels (Cubic and Gaussian) were used to classify
four different arm movements, through 3 EMG signal channels, by combining four
feature extractions MAV, WL, ZC and, SSC in such a way that in total three kinds of
vectors (13,25, and 37) are introduced to SVM. Cubic and gaussian are specified kernel
function to compute the matrix. We set kernel scale automatic, box constraint level set 1,

multiclass method set one-vs-one and standardize data to improve the fit

Ensemble classifier is a system made by combining different classifiers to
produce more safe and stable predictions [86]. The system is built with the N classifier
that can be single or multiple, while the classification is appropriate to the feature vector,
for each feature vector 1, each classifier yields the output value (the resulting output value
is counted). Then, the output of the ensemble classifier is determined by the number of
votes. If the number of classifiers is, in fact, the average value of the classifier’s decision,
it is rounded off, and the ensemble classifier decision is determined. All feature vectors
are applied by this process [87]. We used the ensemble (subspace KNN) method using six

dimensions subspace and learner nearest neighbors using 30 learners.
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4.2.3 Performance Analysis

The performance of six trained models was compared based on classification
accuracy. The performance of the ML for each model is shown in table 4.1 below. From
the table, accuracy ranged between 80.5% - 98%. The highest accuracy was selected as
the target model for evaluation. As such, Ensemble (subspace KNN) was chosen for

model 1, 2, 3, and 6 while KNN (fine) was chosen for model 4 and 5.

Table 4-2 Accuracy of machine learning training model prediction performance.

\ A B C D E F G H
Decision Decision KNN SVM Ensemble Ensemble
KNN SVM
Tree Tree  (Weighte (Fine  (Bagged |(Subspace
(Fine) | (Cubic)
~ (Medium) (Fine) d) Gaussian) Trees) KNN)
e 80.5% 80.5% 89% 89% 89% 82% 84.5% 92.5%
b 74.5% 74.5% 92% 95.5% 92% 75.5% 89.5% 96%
¢ 77% 77% 93.5% 94% 93% 74% 86% 95%
d 90% 90% 94.5% 96.5% 95% 95.5% 91.5% 96%
? 82% 82% 93% 96.5% 93.5% 92% 90% 96%
85% 85% 93.5% 97.5% 95.5% 94% 93.5% 98%

The confusion matrix for five subjects is plotted in fig. 4-4, fig. 4-5, and fig. 4-
6. From the figures, all models achieved significant performance with regard to accuracy.
Motion prediction comparison shows that the rank of accuracy class 2 (motion 2) is higher
than the others, and class 3 (motion 3) is the lowest rank. The best accuracy is having a
bigger number of true-positive rates (TPR) than others and a smaller number of false-
negative rates (FNR). Mostly all training models have the value of TPR about 74%—
96.5% and the value of FNR about 0—-16%. Compared with 65 primary studies reviewed

by Jaramillo-Yanez et al. regarding the use of ML on HGR using the EMG signal, the
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accuracy of the classification model resulted in a range of 70-100% [23]. We showed that

all ML training models are working and predicting properly.
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Figure 4-5 Confusion matrix of discrimination model 3 (left) and model 4 (right).
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Figure 4-6 Confusion matrix of discrimination model 5 (left) and model 6 (right).

The prediction performances in every motion were computationally analyzed
using three performance metrics: accuracy, recall, and precision. The classification
accuracy metric (see equation 21) is the ratio of motions perceived correctly among all of
the test data. The classification recall metric (equation 22) is the fraction of motions
predicted correctly for a class among the test data of this class. The precision metric
(Equation 23) is the ratio of motion realized correctly from a class among the motions

recognized by the ML model as this class [23].

g

_ jk=1"M,jk
Accuracyyseriy = g g
j=1 k=1 ",j k 21)
N kk
Recalluser(i)class(k) =g
j=1",jk 22)
.. o Nijj
PreClSlonuser(i)class(j) - g
k=1".jk 23)
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where n;; 1s the number of motions conducted by the subject i, which were
recognized by the model as j, but they were k. iel = i1, i2, ..., iy is the set of test subjects,
jeJ =ji1, jo, ..., Jo 1s the set of predicted classes, keK = ki, ko, ..., kg 1s the set of actual

classes, u is the total number of test subjects, and g is the number of classes.

4.3 Result and Discussion

Identifying multiple hand motions using a few EMG sensors and muscles is one
of the challenges for improving high levels of usability in controlling robotic hands,
which we are attempting to solve. The experiment was conducted systematically, and the

results are shown below.

The overall performance comparison for five subjects shows that the users could
achieve the acceptable percentage of performances, including accuracy (figure 4.5), recall
(figure 4.6), and precision rates (figure 4.7). The development of a machine learning
model that is used to discriminate EMG signals from three sensor inputs of three muscles
for three kinds of movements shows promising results. Scenarios of six models were used
based on the level of the frequency cut-out factor in the segmentation, whether or not
using TKEO is used, and the model classification. The results of the classifications
performance percentage of the five subjects are, for the accuracy rate, in the range of
65%—100%, for the recall rate, in the range 91%—100%, while for the precision rate, in

the range of 70%—100%.
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Table 4-3 Total performance index

Model Accuracy Recall Precision
1 96.67% 99.66% 96.99%
2 94% 99.64% 94.31%
3 96% 99.29% 96.62%
4 86.67% 99.57% 86.92%
5 83.67% 97.7% 85.49%
6 86.33% 96.97% 89.31%

Subject D reports the highest consistent accuracy results than the others, model
1 achieved the highest average percentages of accuracy at 97.67%, while model 6
obtained the lowest at 86.33 %(see table 4.3). At least all the subjects reported consistent
results for recall rate, ranging from 96.97% to 99.67%. Subject A had the most consistent
precision with model 1 which reported an average precision of 96.99%. The reasons why

the performances are varied are because of motion artifacts and inconsistent motion issues.

62



0.05 T T T T T

[ I \ioce! 1 [N Model 2 [ Model 3 [N Model 4 [ Mode! 5_[I] Model 6 |
0.045 - s

0.04 - -

0.035

0.03

0.025

0.02

Processing Time (s)

0.015

0.01

0.005

Subject A Subject B Subject C Subject D Subject E
Figure 4-10 Average processing speed time per 5 subjects.

Table 4-4 Average processing speed time of six models.

Model Average Time (s) SD
1 0.0314 0.0019
2 0.0345 0.0022
3 0.0365 0.0033
4 0.0027 0.0005
5 0.0031 0.0005
6 0.0020 0.0020

Table 4.3 reports the processing time required for the different ML model
classification. The measured delay controller for the HGR model must reach optimal
timing. Overall, all the models that are used by the five subjects require less than 40 ms
for processing speeds of time data analysis (see figure 4.8). The fastest average processing
time is obtained by model 4 at 2.7 ms, while the longest time is acquired by model 3 at

36.5 ms (see table 3). If the data collection time is less than 200 ms and the data analysis
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time is added, the embedded system should be quite relevant to categorize as the real-

time system[26], [44], [57], [88].
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Figure 4-11 Processing flow of 3 Best Discrimination Models.

Based on the performance accuracy rates, recall rates, precision rates, and
processing time, model 1 (TKEO processing with no division inputs per channel using
ensemble subspace KNN) classification achieved the best performance. Model 1 hit
accuracy rates in 96.67%, recall rates 99.66%, and precision rates 96.99%, while model
5 (without using TKEO, two segments input per channel, and four features with ensemble
(subspace KNN) classifier)) had the worst performance. Model 5 had performance
accuracy rates, recall rates, and precision rates of 86.33%, 96.97%, and 89.31%. Subject
D showed more consistent performance than others. Based on this study, using TKEO
achieved better performance results. However, inconsistent motions and motion artifacts
are the main issue. Improving experiment setup for participants, such as giving a proper

explanation and monitoring of participants, can be done to decrease inconsistency.



Chapter 5 Conclusion

In conclusion, the validity of the usage of biopotential signals in robot control
has been verified. Three EMG signals generated from three EMG sensors that are
mounted at three different muscles that correspond with three upper-limb motions have
been discriminated and applied successfully for controlling the robotic arm. Based on the
model’s discrimination generated from the EMG signals envelope using moving average
processing signal, the result shows that models can be used for all subjects to control the
robotic arm for conducting single and two DOF movements with its simplicity and low
computation cost. The control scheme in use proofed to be manageable with an accuracy
range between 50% to 100%. The percentage of accuracy rate per subject ranged 63.3%-
83.33%. The highest performance was motion 1 at 100% while the worst performance

was motion 2 at 50%.

We designed 48 classification models for discriminating three EMG signals at
three upper limb motions and compared and evaluated the minimum parameters of feature
extractions and machine learning models with five healthy subjects’ data. The results
showed that all the proposed models achieved accuracy rates in the range of 74%—-98%
and the processing speed was below 40 ms, which is an acceptable delay for controlling
a robotic arm. Then, the best classification model was discriminated with 12-parameter-
ensemble (subspace KNN) accuracy rates of 96.67, recall rates of 99.66, and precision
rates of 96.99. The difference between the best model and the conventional model was
TKEO. It seemed that TKEO functioned to make the results of MAV, ZC, SSC, and WL
stand out. Further research will deal with classifying more than three upper motions with

three EMGQG sensors.
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The majority of real-time controlling systems for the robotic arm are still using
EMG signals, especially multiple channels targeting multiple muscles to generate
multiple synchronous control signals. This should be an open space for investigating in
the future for real-time scenarios. Furthermore, to achieve real-time usability,
appropriate design of the assistive device, automation of training, data acquisition
process, feature extraction, adaptive and robust model, and classification techniques

should be properly investigated and implemented.
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